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Abstract

We have run realistically-sized experiments comparing
a number of techniques for the Earth-Observing Satel-
lite (EOS) scheduling problem. This problem requires
the scheduler to satisfy complex constraints while at-
tempting to include as many high-priority observations
as possible. We compared the genetic algorithm, simu-
lated annealing, squeaky wheel optimization, stochas-
tic hill climbing, iterated sampling, and heuristic-
based stochastic search with contention heuristics un-
der a number of conditions on a three satellite, one
week, 6,000+ observation problem. Simulated anneal-
ing with simple mutation operators was the clear win-
ner. Heuristic-based stochastic search with contention
heuristics was hundreds of times slower than the sim-
pler techniques and performed very poorly even when
far more CPU was used. For this problem, at least
among the techniques tested, simple fast and stupid
with a little learning significantly out-performs smart
without learning.

Introduction
A growing fleet of scientific, military, and commercial
Earth observing satellites (EOS) circles the globe. Most
of these satellites are within about 700 km of the sur-
face. Observations of any particular location can only
be made only when the satellite is overhead. A sin-
gle orbit takes approximately 100 minutes and, since
the Earth turns underneath the satellite, any partic-
ular point on the surface is only occasionally, if pre-
dictably, visible. Although there are approximately 60
EOS satellites in orbit today, image collection is nearly
always scheduled separately for each satellite with man-
ual coordination, if any. Various studies (Globus et al.
2002) (Rao, Soma, & Padmashree 1998) have suggested
that automatic coordination of multiple satellites can
be beneficial, but the best techniques to use is not clear.

This study compares 14 EOS scheduling techniques
on a realistic-sized model problem. In particular, we
compare simulated annealing, hill climbing, the genetic
algorithm, squeaky wheel optimization, iterated sam-
pling (ISAMP) and heuristic based stochastic search
(HBSS) with contention heuristics (Frank et al. 2002).
In the next section we describe the scheduling prob-
lem and our model. A description of the scheduling

techniques follows. The nature and results of our com-
putational experiments are then presented along with
analysis. Space limitations preclude a review of previ-
ous work, but (Globus et al. 2002) and (Globus et al.
2003) provide such a discussion.

EOS Scheduling Problem

In this section we first describe the EOS scheduling
problem as perceived by satellite operators and develop-
ers. Then we describe our general model of the problem,
with many details removed, and the particular model
used to generate our results.

EOS scheduling attempts to schedule as many
highest-priority observations as possible within a fixed
period of time on a fixed set of satellite born sensors.
For example, the Landsat 7 satellite scheduler is con-
sidered to have done a good job if 250 observations are
made each day, out of perhaps 300 or more requests.
EOS is complicated by a number of important con-
straints. Potin (Potin 1998) lists some of these con-
straints as:

1. Revisit limitations. A target must be within sight of
the satellite; and EOS satellites travel in fixed orbits.
These orbits pass over any particular place on Earth
at limited times so there are only a few observation
windows (and sometimes none) for a given target.

2. Time required to take each image. Most Earth ob-
serving satellites take a one dimensional image and
use the spacecraft’s orbital motion to sweep out the
area to be imaged.

3. Limited on-board data storage. Images are typically
stored on a solid state recorder (SSR) until they can
be sent to the ground.

4. Ground station availability (SSR dumps). The data
in the SSR is sent to the ground when the satellite
passes over a ground station. Ground station win-
dows are as limited as with any other target.

5. Transition time between look angles (slewing). Some
instruments are mounted on motors that can point
side-to-side (cross-track).

6. Power and thermal control.



7. Coordination of multiple satellites.

8. Cloud cover. Some sensors cannot see through
clouds. Not only do clouds cover much of the Earth
at any given time, but some locations are nearly al-
ways cloudy.

9. Stereo pair acquisition or multiple observations of the
same target by different sensors or the same sensor
at different times.

For further details of the EOS scheduling problem see
(Frank et al. 2002) and (Sherwood et al. 1998).

Our model problem implements all these constraints
except the last two. The model problem consists of
three satellites in Sun-synchronous orbits (orbits in
which the equator is crossed a the same local time each
orbit) for one week. The satellites are spaced ten min-
utes apart. Each satellite carries one sensor mounted
on a cross-track slewable motor that can point up to
24 degrees side to side and turns one degree in two sec-
onds. Each satellite has an SSR capable of storing 50
arbitrary units.

We model our power and thermal constraints using
so called duty cycle constraints, the approach taken by
NASA’s Landsat 7 satellite. A duty cycle constraint
requires that the sensor not be turned on for longer
that a maximum time within any interval of a certain
length. This insures conformance with power, thermal,
and other physical constraints on the space craft. Our
model problem uses the Landsat 7 duty cycles. Specif-
ically, an sensor may not be used for more than:

1. 34 minutes in any 100 minute period.

2. 52 minutes in any 200 minute period.

3. 131 minutes in any 600 minute period.

There is one ground station in Alaska. Whenever a
satellite comes within sight of the ground station it is
assumed to completely empty its SSR, which is then
available for additional observation storage. There are
approximately 75 SSR dumps per spacecraft during the
week. Since some orbits are over oceans and all targets
are on land, some SSR dump opportunities are wasted
on an empty SSR.

6300 observation targets were randomly generated on
land. Of these, 6114 were observable by at least one
satellite. The targets were assumed to be in the cen-
ter of a rectangle that requires 24 seconds (taken from
Landsat) of satellite motion to image. Observations
require one, three, or five arbitrary storage units (one
third each) on the SSR. Each observation is assigned a
priority from one to six evenly spaced in 0.1 increments.
Each observation has 2-24 windows, times when at least
one satellite is within view of the observation’s target.

The fitness (quality) of each schedule is determined
by a weighted sum (smaller numbers indicate better
fitness):

F = wp

∑
Ou

Po + wsMs + wpointMp (1)

where F is the fitness, Ou is the set of unscheduled ob-
servation, Po is the priority of an observation, Ms is the
mean time spent slewing per scheduled observation, Mp

is the mean off-nadir (nadir is straight down) pointing
angle for scheduled observations, w stands for weight,
wp = 1, ws = 0.01, and wpoint = 0.00137. Note that
the weights heavily favor the priority of unscheduled
observations over pointing and slewing time objectives.

Scheduling Techniques
This study compares 14 search techniques applied to
the EOS scheduling problem. The simplest techniques
tested here are simulated annealing, hill climbing, two
variants of the genetic algorithm, and ISAMP (essen-
tially random scheduling) taking random steps. By us-
ing a more intelligent mutation operator, these algo-
rithms become variants of squeaky wheel optimization
(Joslin & Clements 1999). Finally, we examine HBSS
(Bresina 1996) with contention heuristics (Frank et al.
2002) where a great deal of processing is devoted to de-
termining the order in which observations are placed in
schedule timelines.

We represent a schedule as a permutation (the geno-
type) of the observations. A simple, deterministic
greedy scheduler assigns resources to the observations
in the order indicated by the permutation (except for
HBSS). This produces a timeline (the phenotype) with
all of the scheduled observations, the time they are ex-
ecuted, and the resources (SSR, sensor, pointing angle)
used. The greedy scheduler assigns times and resources
to observations using earliest-first scheduling heuristics
while maintaining consistency with sensor availability,
onboard memory (SSR) and slewing constraints. If an
observation cannot be scheduled without violating the
current constraints (those created by scheduling obser-
vations from earlier in the permutation), the observa-
tion is left unscheduled.

Simple earliest-first scheduling starting at epoch
(time = 0) had some problems. We discovered that the
algorithm works better if ’earliest-first’ starts at some
random. If the observation cannot be scheduled before
the end of time, the algorithm starts at epoch and con-
tinues until the observation is scheduled or the initial
time is reached. The time each observation is scheduled
is stored along with the permutation and is preserved
by mutation and crossover and is used as the starting
point for the earliest-first scheduler operating on mod-
ified permutation. The extra scheduling flexibility may
explain why this approach works better than earliest-
first starting at epoch.

Constraints are enforced by representing sensors and
satellite-SSR as timelines. Scheduling an observation
causes timelines to take on appropriate values (i.e., in
use for a sensor, slew motor setting, amount of SSR
memory available) at different times. An observation is
inserted at the first time available consistent with the
current constraints.

The simplest algorithm tested was ISAMP, which is
essentially a random search. With ISAMP, each sched-



ule is generated from a new random permutation with
random start times for the simple, deterministic, greedy
scheduler.

The next class of algorithms tested were the ’evo-
lutionary’ search techniques, which we define here as
those that start with random permutations and gener-
ate new permutations with mutation and/or crossover.
These search techniques are slightly more intelligent
that ISAMP in that they remember at least one pre-
viously generated schedule and thereby learn. The al-
gorithms tested were:

1. Stochastic hill climbing.

2. Simulated annealing. The temperature starts at 100
(arbitrary units) and is multiplied by 0.92 every 1000
children (100,000 children are generated per run).

3. A steady-state tournament selection genetic algo-
rithm with population size 100. The individual to
replace is chosen by a tournament from the whole
population where the least fit is replaced. Tourna-
ment size is always two.

4. A generational elitist genetic algorithm. The popula-
tion size is 110 and the 10 best individuals are copied
into the next generation.

Each search technique was tested with three mutation
operators:

1. Random swap. Two permutation locations are cho-
sen at random and the observations are swapped,
with 1-15 swaps (chosen at random) per mutation.
Earlier experiments determined that allowing more
than one swap improved scheduling. A single ran-
dom swap is called order-based mutation (Syswerda
& Palmucci 1991).

2. Temperature-depended swap. Here the number of
swaps (1-15) is still chosen at random but with a bias.
Early in evolution a larger number of swaps tend to
be used, and later in evolution fewer swaps are per-
formed. This is analogous to the ’temperature’ de-
pendent behavior of simulated annealing. The choice
of the number of swaps is determined by a weighted
roulette wheel where the weights vary linearly as evo-
lution proceeds starting at n and ending at 15 − n
where n is the number of swaps. Earlier experiments
tried fewer swaps early in evolution and more swaps
later. This didn’t work as well.

3. Squeaky shift. This mutator implements squeaky
wheel optimization. The mutator shifts 1-15 (cho-
sen randomly) ’deserving’ observations earlier in the
permutation. Early in the permutation an observa-
tion is more likely to be scheduled since fewer other
observations will have been scheduled creating addi-
tional constraints. Each observation to shift forward
is chosen by a tournament of size 50, 100, 200, or
300 (chosen at random each time). The observation
is always chosen from the last half of the permuta-
tion. The position-to-shift-in-front-of is chosen by a

tournament of the same size (each time) and is guar-
renteed to be at a location at least half way to the
front of the permutation (starting at the ’deserving’
observation). An observation that deserves to move
earlier in the permutation determined by the follow-
ing characteristics (in order):

(a) unscheduled rather than scheduled
(b) higher priority
(c) later in the permutation

The position-to-shift-in-front-of has the opposite
characteristics.

In the case of the genetic algorithms half of all chil-
dren are created by a mutation and the other half
by crossover. The crossover operator is Syswerda and
Palmucci’s position-based crossover (Syswerda & Pal-
mucci 1991). Roughly half of the permutation posi-
tions are chosen at random (50% probability per po-
sition). These observation numbers in these positions
are copied from the father to the child. The remain-
ing observation numbers fill in the other permutation
positions in the order they appear in the mother.

The final algorithm tested was HBSS with contention
heuristics. HBSS does not use the permutation or
the simple greedy scheduler. The observations are
still scheduled one at a time, but next observation to
schedule is chosen by a weighted roulette wheel. For
a given observation, the windows are chosen by an-
other weighted roulette wheel. Observation and window
weights are assigned a dynamic weight which depends
on the remaining observations and windows that do not
violate any constraint except the duty cycle constraint.
The duty cycle constraint is not considered by the con-
tention heuristics for performance reasons. The weight
of an observation is a function of how difficult it is to
allocate a sensor and space on the SSR. The difficulty is
the minimum of the contention any of an observation’s
windows faces in meeting the current constraints. The
contention of each window is a function of the other ob-
servation’s windows that have incompatible sensor use
requirements or compete for the SSR. This is modulated
by the need of each observation, which is a function of
the observation’s priority and number of windows cur-
rently believed not violate constraints (remember that
the duty cycle is not considered). Formally:

Do = wpP + wsminw(Cs) + wssrminw(Cssr)(2)

Cs =
∑
Os

Ns (3)

Cssr =
∑
Ossr

Nssr (4)

Ns = P/|Wa| (5)
Nssr = SSRaP/|Wa| (6)

where Do is an observation’s difficulty, P is an obser-
vation’s priority, minw is the minimum over all of an
observation’s windows that are believed not to violate



current constraints, Cs is a window’s sensor contention,
Cssr is a window’s SSR contention, wp = 1, ws = 1,
wssr = 1, Os is the set of observations that cannot
use a window’s sensor if the window is scheduled due
to sensor use or slewing constraints, Ns is an observa-
tion’s sensor need, Ossr is the set of observations that
use the SSR between the same two SSR dumps and are
not believed to violate current constraints, Nssr is an
observation’s SSR need, SSRa is the amount of mem-
ory currently available in the SSR, and Wa is the set
of an observation’s windows are not believed to violate
currant constraints. All of these values, except the pri-
ority, are updated every time an observation is sched-
uled or found to violate the constraints; including the
duty cycle constraint.

HBSS with contention heuristics is hundreds of times
slower than the other techniques on this problem, and
thousands of times slower on problems with much
slower slewing motors (more windows are incompati-
ble with each other). The contention heuristics require
large, complex data structures to incrementally update
the need, contention, difficulty and weight of each as-
yet-unscheduled observation and it’s windows. This re-
quires substantial memory. For example, this model
problem with no limits on the slew angle could not fit
in memory (there were more windows and more were
incompatible with each other).

Experiment
To find the best algorithm for the model problem we
compared a total of 14 techniques. These were ISAMP,
HBSS, and every combination of three search tech-
niques – hill climbing, simulated annealing, steady state
GA, and generational GA – with three mutation oper-
ators – 1-15 random swaps, 1-15 temperature depen-
dent swaps, and 1-15 squeaky shifts. Except for HBSS,
32 jobs with identical parameters (except the random
number seed) were run for each algorithm. Each job
generated approximately 100,000 schedules (the GA
runs generated slightly more). These jobs took 2-3
hours each on one Athalon processor of our Linux clus-
ter.

For HBSS, we ran the equivalent of eight 100,000
schedule jobs. Generating 100,000 HBSS schedules
takes about 830 hours on the same Athalon processor
(a couple hundred times slower than the other tech-
niques). Due to time constraints, only 800,000 total
HBSS schedules were generated, rather than 3.2 million
for each of the other techniques. Thus, HBSS results
are discussed separately below and are not included in
tables and figures to avoid the impression the data are
directly comparable. However, the HBSS results were
so poor (barely better than ISAMP) that the difference
in data size makes little difference to the conclusions.

Table 1 compares the mean fitness. Nearly all of the
differences were statistically significant by both t-test
and ks-test, with confidence levels usually far above
99%. We see that simulated annealing with temper-
ature dependent swaps (SaTd) performs best with al-

gorithms using simulated annealing, hill climbing, tem-
perature dependent swaps, and random swaps clearly
leading. The message seems to be modify one schedule,
take random steps, and restrict steps more and more as
evolution proceeds.

Simulated annealing and hill-climbing with the
squeaky shift operator are next. These outperform
the genetic algorithm regardless of mutation operator.
Again, within the genetic algorithms the squeaky shift
mutator performs the worst.

ISAMP, as one might expect for random search, per-
forms the worst. However, the very best HBSS schedule
(out of 800,000 generated) was only a little bit better
than the ISAMP mean.

The small standard deviations for all techniques sug-
gests that all runs for a given technique get about the
same fitness. Thus, even if the fitness landscape is
multi-modal all the minima must be about the same.
Figure 1, which shows the breadth of each fitness distri-
bution over 32 runs, confirms this view. For this reason,
we suspect that this problem requires mostly exploita-
tion, rather than exploration, which also explains the
poor GA results. Evolutionary change is spread out
over the GA populations rather than concentrated on
a single individual as for simulated annealing and hill
climbing.

The squeaky shift mutators performance relative to
random swaps suggests that it is smart in the wrong
way. In preliminary experiments we also tried swap-
ping, rather than shifting, observations and forcing ob-
servations to be swapped into certain parts of the per-
mutation. The shift operator performed the best, but
still not as well as the random swap mutator. See
(Globus et al. 2003) for some of this data. If random
outperforms intelligent, then clearly the intelligence is
being applied in the wrong way. We do not understand
the dynamics of permutation scheduling in any funda-
mental way, and we don’t even know if the dynamics
are fundamentally similar for different problems. Un-
til a better understanding is reached, the random swap
operators – with a decrease in the number of swaps as
evolution proceeds – appears best.

Figures 2-4 show that the individual objectives in
the weighted sum of equation 1 display much the same
trend as the fitness. Simulated annealing and hill climb-
ing with random swaps beats squeaky shifts and the ge-
netic algorithm in almost every objective of the fitness
function (figures 3-5). This is a bit surprising since the
weights make the pointing and slewing objectives much
less important than the sum of the priorities. However,
notice that the range of average off-nadir pointing is
very large suggesting that this measure made little dif-
ference, although the difference in means was almost
always significant by both the t-test and ks-test.

Figure 5 indicates the number of unscheduled obser-
vations, an objective not found in the fitness function.
Notice that the squeaky mutators in simulated anneal-
ing and hill climbing are worst than the genetic al-
gorithms with random swaps. This suggests that the



squeaky mutators with simulated annealing and hill
climbing do a better job of scheduling the high priority
observations to make up for scheduling fewer observa-
tions.

Summary
We have compared 14 different techniques for schedul-
ing EOS fleets on a realistically sized model prob-
lem. Simple techniques such as simulated a anneal-
ing and hill climbing outperformed the genetic algo-
rithm and HBSS with contention heuristics. Simple
random swap mutation outperformed more ’intelligent’
mutation. Reducing the number of random swaps as
evolution proceeds also improves performance. The
most ’intelligent’ algorithm with no learning, HBSS
with contention heuristics, barely outperformed ran-
dom scheduling (ISAMP) in spite of requiring far more
computing resources. Apparently, taking advantage of
previous scheduling attempts, as simulated annealing,
hill climbing, and the genetic algorithm does, has more
value than large amounts of computation to choose just
the right move to make. For this application and these
techniques, fast and stupid with a little learning out-
performs smart.
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Search technique mutation operator abbreviation mean fitness fitness std. dev.
simulated annealing temperature dependent swaps SaTd 9205 20

hill climbing temperature dependent swaps HcTd 9310 21
simulated annealing random swaps SaSr 9311 19

hill climbing random swaps HcSr 9368 25
simulated annealing squeaky swaps SaSs 9489 19

hill climbing squeaky swaps HcSs 9507 24
generational GA random swaps GgSr 9700 38
steady state GA random swaps GsSr 9700 25
steady state GA temperature dependent swaps GsTd 9741 31
generational GA temperature dependent swaps GgTd 9834 24
generational GA squeaky swaps GgSs 9964 53
generational GA squeaky swaps GsSs 10010 46

ISAMP random ISAMP 10463 11

Table 1: Scheduling algorithms tested ordered by mean fitness. HBSS is left out since processing time did not permit
32 HBSS runs of 100,000 schedules each. The best HBSS fitness in the equivalent of 8 runs was 10438, a little better
than the ISAMP mean but worse than all other techniques.

Figure 1: Comparing fitness for 32 runs. The boxes indicate the second and third quartiles. The line inside the box
is the median and the whiskers are the extent of the data. Outliers represented by small circles.



Figure 2: Sum of the priority of unscheduled observations (
∑

Iu
Po from equation 1).

Figure 3: Mean slewing time needed for each scheduled observation (Ms from equation 1).



Figure 4: Mean off-nadir pointing angle needed for each scheduled observation (Mp from equation 1).

Figure 5: Number of unscheduled observations (|Iu| from equation 1).


